Semestral

Elementary Number Theory

Attempt FIVE problems. The 1	maximum you can sco	ore is 50.	
Prove or disprove:			7+8=
i. For all positive integers a ii. Given any integer $k \ge \mu(n+k)$. [<i>Hint.</i> Can th	<i>n</i> , the congruence $(x^2 - 1)$, there exists an intege is common value be ± 1	$ (7)(x^2-13)(x^2-91) \equiv 0 \pmod{n} \text{ is solvable.} $ er $n \ge 1$ such that $\mu(n) = \mu(n+1) = \cdots = $	
State the Designative Laws for		i sumbols. Use them to compute (1007/10005)	10
		symbols. Use ment to compute (1997/10003).	10
Does the congruence $7X^2 +$	$X + 3 \equiv 0 \pmod{317}$	have a solution? If yes, solve it.	10
Describe all the primes in the with the corresponding value	e set $S := \{x^2 + 3y^2 : x \}$ es of x and y. [<i>Hint</i> . Thi	$x, y \in \mathbb{Z}$. Give three examples of primes in S nk of class numbers!]	10
	OR		
! Let $f(X, Y)$ be a primitive b that for any divisor $d > 0$ of	binary quadratic form, so k there are positive	and let $k > 1$ be a squarefree integer. Prove integers x and y such that $d = \gcd(x, y) =$	

5. Let Λ be the von Mangoldt function. Describe the set $Z = \{n \ge 1 : (\Lambda * \Lambda) (n) = 0\}$.

OR

10

10

5.' Prove that

$$\sum_{n \leqslant x} \mu(n) \left[\frac{x}{n} \right] = 1$$

for all $x \ge 1$. [*Hint.* Write $[y] = \sum_{m \le y} 1$ and interchange the order of summation. Dirichlet's hyperbola method is also applicable!]

6. Prove that

$$\sum_{p \leqslant x} \frac{1}{p} > \log \log x - 1/2$$

for $x \ge 2$, where the sum runs through the primes $p \le x$.

OR

·(`)·

- 6. Let p_n denote the *n*th prime. Show that $p_{n+1} \leq p_1 p_2 \cdots p_n + 1$ for all $n \geq 1$. Deduce that $p_n < 2^{2^n}$ for all $n \geq 1$ and that $\pi(x) \geq \log \log x$ for all $x \geq 2$.
- 7. Let $(u_n)_{n \ge 0}$ be a complex sequence satisfying a linear recurrence of order 2. Suppose $u_0 = 0, u_1 = 10$ 2, $u_2 = 16, u_3 = 98$. Find the *n*th term u_n of the sequence in closed form.